

INGENIERÍA DE RECIPIENTES A PRESIÓN SEGÚN ASME SECCIÓN VIII DIV. 1

DOCENTE

ALEISER QUEVEDO ACUÑA

- Inspector ASME
- 15 años de Experiencia

ACREDITACIONES

- ☐ Inspector Autorizado ASME AI | B | R N° 16201
- ☐ Inspector Nuclear ASME Endoso N
- ☐ Inspector de Recipientes a Presión API 510 Nº 97680
- ☐ AWS SCWI | Inspector Senior de Soldadura N° 25030178

TRAYECTORIA PROFESIONAL

Ingeniero Mecánico con 15 años de experiencia en control y aseguramiento de la calidad en proyectos de construcción, montaje y mantenimiento de estructuras, calderas, intercambiadores de calor, tanques atmosféricos, líneas transportadoras de hidrocarburos y montajes electromecánicos.

Experto en el desarrollo de sistemas de calidad para talleres de fabricación de recipientes a presión, con amplio dominio de NB-263, RCI-1 y demás reglas para Inspectores Comisionados, así como del Código API 510 y estándares relacionados. Sólida trayectoria en inspección de soldadura, desarrollo de procedimientos de soldadura y calificación de soldadores.

Algunos proyectos desarrollados son:

- □ COTEMAR Inspección para la reparación de Separador de desfogue en Plataforma Maritima AKALG Compresion / Pemex en Campeche Mexico Inspector Authorizado ASME.
- ☐ Operadora Cicsa Proyecto Reineria Dos Bocas (orden de trabajo por más de 480 recipientes a presión) en México Inspector Authorizado ASME.
- ☐ Petroport Consultor técnico para la fabricación de esfera para GLP de 29000bbls ASME Sección VIII Div 2 clase 2 en Panamá.

Nuestros
DOCENTES cuentan
con la EXPERIENCIA
que NECESITAS

DOCENTE

CARLOS LLANOS VASQUEZ

- Ingeniero de Equipos Estáticos
- 20 años de Experiencia

SOFTWARES DE DISEÑO

- PV ELITE
- ☐ CAESAR II
- AFT FATHOM

TRAYECTORIA PROFESIONAL

Me desempeño como Líder de Mecánica y Tuberías – División Oil & Gas en CUMBRA Ingeniería, con sólida experiencia en el desarrollo de ingeniería de sistemas de tuberías, recipientes a presión y tanques atmosféricos bajo normativas ASME, API, UL y NFPA.

He liderado equipos en las disciplinas de mecánica, tuberías y sistemas contra incendio, abarcando análisis de esfuerzos en tuberías, distribución de plantas de procesos, diseño de soportes metálicos y proyectos de almacenamiento de combustibles, integrando conocimientos técnicos y de gestión para desarrollar soluciones eficientes, seguras y alineadas con altos estándares de calidad.

Algunos proyectos destacados son:

- ☐ ECOPETROL Contratista de Tanques y Recipientes. Líder de disciplina Mecánica.
- NEXA Ing Detalle Sistema de Contingencia para derrame de Tuberías de Relaves - Líder de disciplina Tuberías / Procesos.
- ☐ MINERA LAS BAMBAS Proyecto Infraestructura Ferrobamba, Canal De Contorno.
- ☐ MINERA MARCOBRE Tanque de Derrames de Acido Sulfúrico En Plataforma De Tierra.

Nuestros
DOCENTES cuentan
con la EXPERIENCIA
que NECESITAS

METODOLOGÍA DE ENSEÑANZA

 Desarrollo aplicado a Recipientes a presión horizontal y vertical

 La empresa se reserva el derecho de realizar cambio de docente en caso lo amerite

BENEFICIOS DEL CURSO

Desarrollo del curso en Vivo

Acceso permanente a la plataforma

 Asesoría personalizada con el expositor

 Certificado por Especialización en el Curso

Material descargable
 Memorias de Cálculo,

 Hojas de Cálculo, Información de Casos prácticos, entre otros.

CERTIFICADO DEL CURSO

CERTIFICADO

otorgado a:

NOMBRES Y APELLIDOS

DOCUMENTO DE IDENTIDAD

CÓD: IRP25-00E10000

Por haber culminado y aprobado exitosamente la especialidad de INGENIERÍA DE RECIPIENTES A PRESIÓN SEGUN ASME SECCIÓN VIII DIV. 1 como parte de nuestro programa de capacitación internacional.

Con una duración de 00 horas teóricas y prácticas.

ROBERTO CARLOS CHUCUYA HUALLPACHOQUE DIRECTOR ACADÉMICO ING. ENERGÍA - CIP: 124348 ALEISER QUEVEDO ACUÑA INSPECTOR ASME CARLOS LLANOS VASQUEZ INGENIERO DE EQUIPOS ESTÁTICOS

HORARIOS DEL CURSO

PERÚ – COLOMBIA –
 ECUADOR – PANAMÁ

 MÉXICO - HONDURAS - NICARAGUA -EL SALVADOR - GUATEMALA

Martes	7:30 pm - 10:30 pm
Jueves:	7:30 pm - 10:30 pm
Viernes	7:30 pm - 10:30 pm

Martes	6:30 pm - 9:30 pm
Jueves:	6:30 pm - 9:30 pm
Viernes:	6:30 pm - 9:30 pm

BOLIVIA - CHILE

Martes	8:30 pm - 11:30 pm
Jueves:	8:30 pm - 11:30 pm
Viernes:	8:30 pm - 11:30 pm

ARGENTINA - PARAGUAY - URUGUAY

Martes	9:30 pm - 12:30 am
Jueves:	9:30 pm - 12:30 am
Viernes:	9:30 pm - 12:30 am

COSTO DE INSCRIPCIÓN

- PERÚ
 - PAGO AL CONTADO

Precio Final

S/. 800.00

☐ FINANCIADO

Precio Final

S/.1,000.00

S/. 500.00

S/. 500.00

Cuota 1

Cuota 2

MÉXICO

PAGO AL CONTADO

Precio Final

5,340.00 MXN

FINANCIADO

Precio Final

6,670.00 MXN

3,335.00 MXN

3.335.00 MXN

Cuota 1

Cuota 2

BOLIVIA

PAGO AL CONTADO

Precio Final

4,410.00 BS

FINANCIADO

Precio Final

5,510.00 BS

2.755.00 BS

2,755.00 BS

Cuota 1

Cuota 2

LATAM

PAGO AL CONTADO

Precio Final

\$230.00 USD

☐ FINANCIADO

Precio Final

\$ 290.00 USD

\$ 145.00 USD

145.00 USD

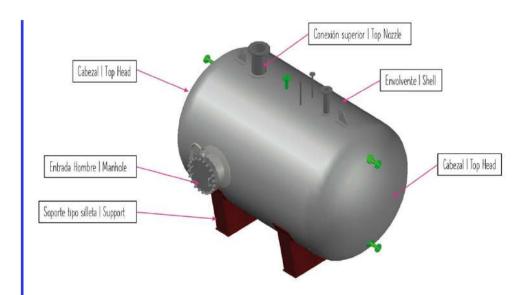
Cuota 1

Cuota 2

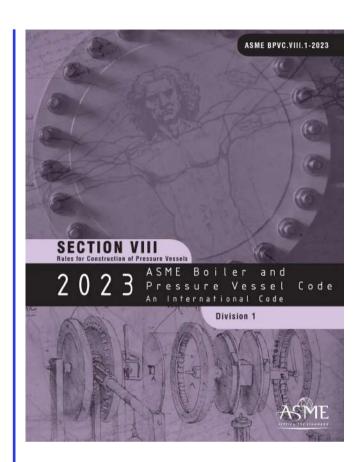
UNIDAD TEÓRICA

INGENIERÍA DE RECIPIENTES A PRESIÓN SEGÚN ASME SECCIÓN VIII DIV. 1

MÓDULO I


INTRODUCCIÓN AL CÓDIGO ASME VIII

■ DESARROLLO DE MÓDULO


- Códigos para calderas y recipientes a presión BPVC.
- Secciones del BPVC.
- Divisiones de la Sección VIII.
- Alcance de la Sección VIII, Div.1.
- Organización y división del código.
- Partes de un recipiente.
- Secuencia de fabricación.
- Códigos y estandares de diseño.

■ OBJETIVO DE MÓDULO

 Proporcionar una visión general de los códigos y normativas aplicables a los recipientes a presión, específicamente la Sección VIII del código ASME, y las diferencias entre las divisiones 1, 2 y 3.

Partes de un recipiente

Código ASME

 Código para Calderas y recipientes a presión

MÓDULO II

CONDICIONES DE DISEÑO

■ DESARROLLO DE MÓDULO

- Tipos de recipientes a presión
- Parámetros de operación
- Parámetros de diseño
- Materiales
- Dimensiones de equipo
- Estudio de especificaciones de equipos

OBJETIVO DE MÓDULO

 Identificar las condiciones de diseño requeridas para el diseño de recipientes a presión.

Clasificación	Especificaciones	Descripción				
	Fluido	GLP				
8	Condición	Soterrado				
**	Posición	Horizontal				
General	Presión de diseño	250 psig				
General	Presión de Prueba	330 psig				
-	MDMT	-20 F° / -29 °C				
*	Capacidad	1810 galones				
	Cabezal	Elipsoidal				
	Cuerpo de tanque	ASTM A-612				
7	Tapas Semiesféricas	ASTM A-612				
Material	Conexiones al recipiente	ASTM A-105				
iviaterial	Cuerpo de Manhole	ASTM A-53 Gr. B				
1	Tapa o Brida Ciega	150 Lbs - RF, A-105				
/-	Soporte para recipiente	ASTM A-612				
Faravira v Draugesián	Radiografiado de Juntas	100%				
Ensayos y Preparación	Preparación Superficial	SSPC-SP6, comercial				

Condiciones de diseño

Las cargas que se deben considerar al diseñar un recipiente deberán incluir las provenientes de:

- (a) presión de diseño interna o externa (según se define en UG-21);
- (b) peso del recipiente y contenido normal en condiciones de operación o prueba;
- (c) reacciones estáticas superpuestas por el peso de equipos acoplados, como motores, maquinaria, otros recipientes, tuberías, revestimientos y aislamiento;
- (d) la fijación de:
 - (1) elementos internos (ver Apéndice no obligatorio D);
- (2) soportes del recipiente, como orejetas, anillos, faldones, monturas y patas (ver Apéndice no obligatorio G);
- (e) reacciones cíclicas y dinámicas debidas a variaciones de presión o térmicas, o de equipos montados en un recipiente, y cargas mecánicas;
- (f) reacciones de viento, nieve y sísmicas, cuando sea necesario;
- (g) reacciones de impacto, como las debidas al choque de fluidos;
- (h) gradientes de temperatura y expansión térmica diferencial;
- (i) presiones anormales, como las causadas por deflagración;
- (j) presión de prueba y carga estática coincidente que actúe durante la prueba (véase UG-99)

ASME UG-22 - CARGAS

A continuación, los parámetros considerados de acuerdo a la norma peruana E.020.

$$V_h = V \cdot \left(\frac{h}{10}\right)^{0.22} \qquad P_h = 0,005 \;\; C \;\; V_h^2$$

$$V = \qquad 75 \;\; \text{km/h} \qquad \text{Velocidad de diseño hasta 10 m de altura km/h}$$

$$h = \qquad 11 \;\; \text{m} \qquad \text{Altura en m. respecto del nsnm}$$

$$Vh = \qquad 76.59 \;\; \text{km/h} \qquad \text{Velocidad de diseño en la altura h en km/h}$$

$$C \qquad 0.7 \;\; \text{Factor de forma adimensional indicado en la Tabla 3.7.4}$$

$$Ph = \qquad 20.53 \;\; \text{kgf/m2} \qquad Presión o succión del viento a una altura h}$$

Cargas de viento

MÓDULO III

SELECCIÓN DE MATERIALES

■ DESARROLLO DE MÓDULO

- Tipos de Acero para recipientes a presión.
- Formas de corrosión y Factor por corrosión permisible.
- Designación de materiales de acuerdo al código ASME.

■ OBJETIVO DE MÓDULO

 Seleccionar adecuadamente los materiales para recipientes a presión en la corrosión, propiedades esenciales y esfuerzos admisibles.

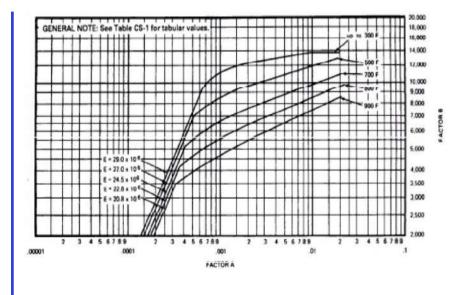
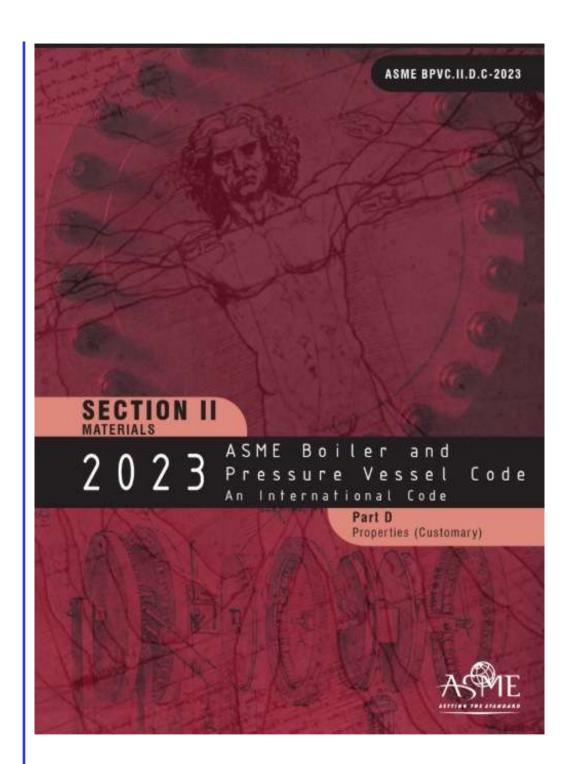
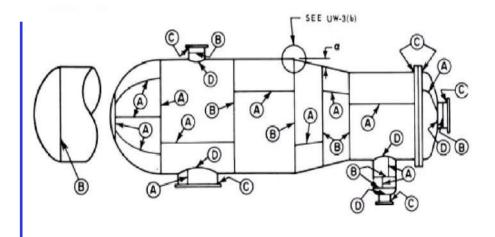



Gráfico de factor "A"

ASME SECCION II - PARTE D

MÓDULO IV


EFICIENCIA DE LA JUNTA

■ DESARROLLO DE MÓDULO

- Categoría y tipos de juntas.
- Requerimientos de servicio.
- Valor de la eficiencia de la junta.
- RT1, RT2,RT3 y RT4.

■ OBJETIVO DE MÓDULO

 Evaluar la eficiencia de diferentes tipos de juntas en los recipientes a presión y los requerimientos de servicio asociados.

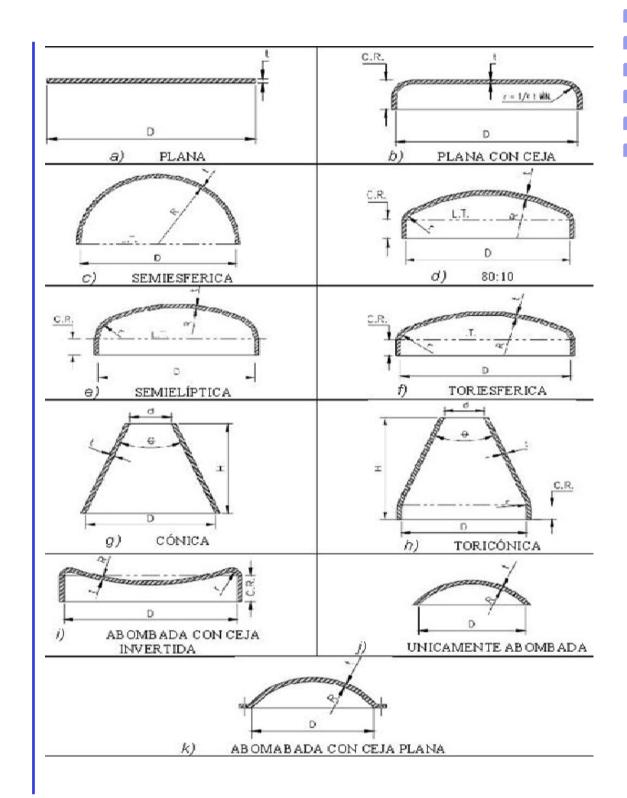
Clasificación de Juntas de Soldadura

Juntas Categoria "D" UW – 3(d)

MÓDULO V

DISEÑO POR PRESIÓN INTERIOR

■ DESARROLLO DE MÓDULO


- Distribución de esfuerzos en cilindros.
- Envolventes cilíndricas y esféricas.
- Cabezal semielíptico, semiesférico, toriesféricos y planos.
- Transiciones cónicas y toricónicas.

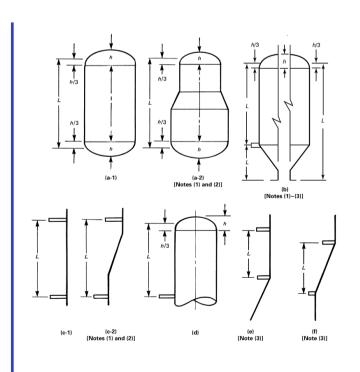
■ OBJETIVO DE MÓDULO

 Diseñar recipientes a presión considerando la distribución de esfuerzos en cilindros y cabezales de diferentes formas.

Espesores Bajo Presión Interna

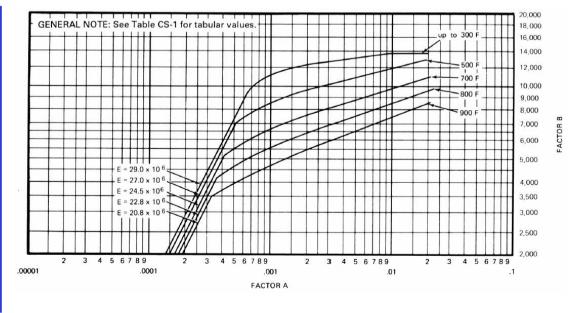
• Tipo de tapas

MÓDULO VI


DISEÑO POR PRESIÓN EXTERIOR

■ DESARROLLO DE MÓDULO

- Línea de soporte.
- Envolventes cilíndricas, presión admisible del cuerpo.
- Anillos de rigidización, presión admisible en anillos.


■ OBJETIVO DE MÓDULO

 Diseñar recipientes considerando la presión exterior y la estabilidad estructural de envolventes y anillos de rigidización.

Anillos de rigidización

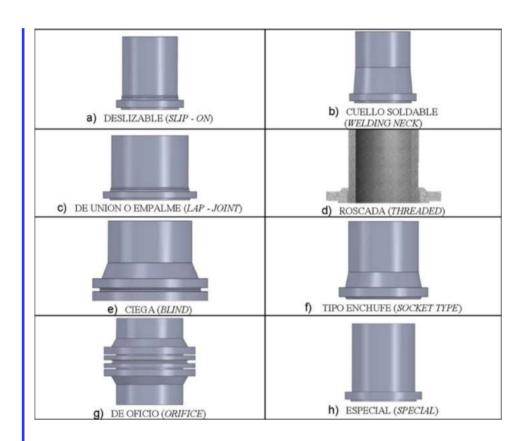
• FIGURE CS - 1

UG-28.1

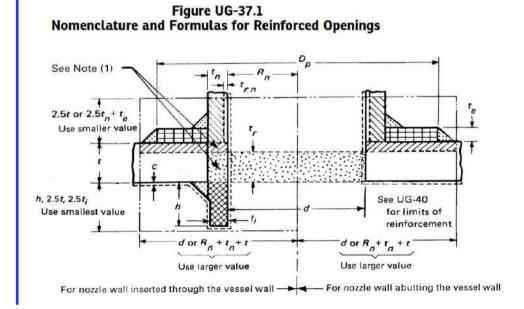
MÓDULO VII

DISEÑO DE CONEXIONES

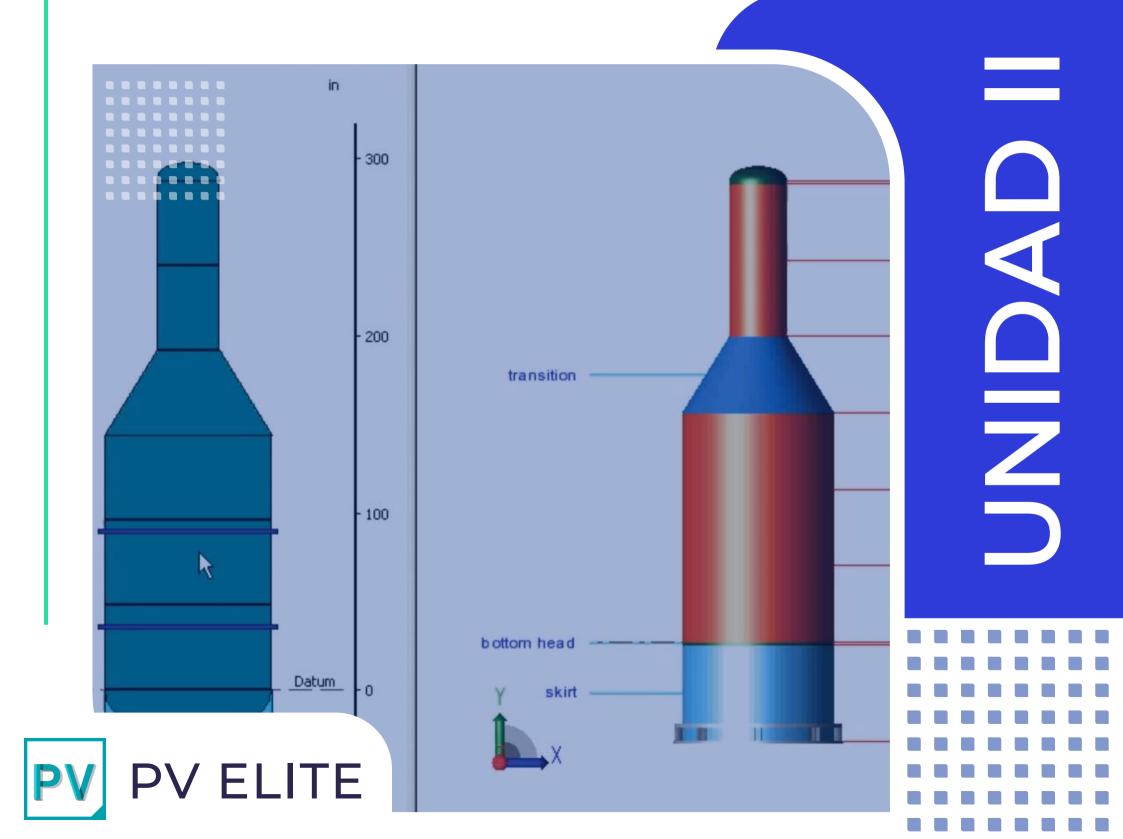
DESARROLLO DE MÓDULO


- Selección de conexiones.
- Brida estándar.
- Selección de juntas.
- Cuello de conexiones.
- Diseño de refuerzos.
- Conexiones auto reforzadas.

■ OBJETIVO DE MÓDULO


 Seleccionar y diseñar adecuadamente las conexiones y refuerzos en recipientes a presión.

UW-35 juntas circunferenciales y longitudinales


Tipos de bridas

Refuerzo de Conexión por UG-37

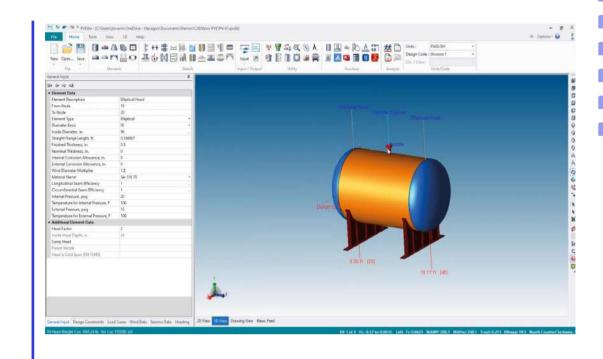
UNIDAD PRÁCTICA

INGENIERÍA DE RECIPIENTES A PRESIÓN SEGÚN ASME SECCIÓN VIII DIV. 1

MÓDULO I

USO DEL SOFTWARE

■ DESARROLLO DE MÓDULO


- Menú principal.
- Menú archivo.
- Menú editar.
- Menú análisis.
- Menú salida.
- Menú herramientas.
- Menú de diagnóstico.
- Menú de ayuda.

■ OBJETIVO DE MÓDULO


 Familiarizarse con el uso de los diferentes menús del software PV ELITE para realizar funciones de diseño y análisis.

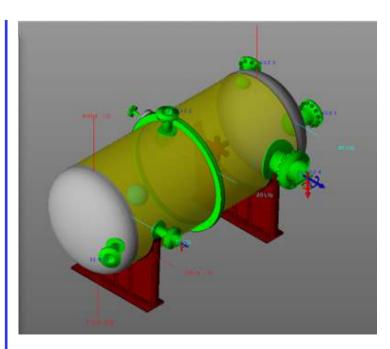
	CONSTR	Sketch (Bundle/Nozzie Orientation)											
			Shell Side			Tube S	ide				140		
Design/Test Pressure	kg/cm	²g		7,8 (3)(4) / (38	B)	8,0 / (38			m [±] m			T OH	
Design Temperature	MDMT °C			115 (4) / 3,4	8		65/3,	4					П
No Passes per Shell				1	6				1111		t t	Ш	
Corrosion Allowance	mm			3 (27)		22	0 (13)	U-100	7			-
Connections (20)(21)	In		1@	10" 300 # RF	(32)	1.6	ag 12" 300 i	# RF (32)	. A1				
Size &	Out		1@	10" 300 # RF	(32)	16	ag 12" 300 s	FRF (32)					
Rating	Intermediate					S	18						
Tube No. 206	OD:	20 1	nm	Thk(avg/mini):	1,6	mm	Length:	6000	mm Pitc	n: 26,0	mm.	Layout:	9
Tube Type : Plain, S	eamless			Material:	SA-789 (S32205	(37)						
Shell: Materia	SA-516-60 + PV	NHT (8)	ID:	1450	mm	OD:	1480	mm	Shell cove	SA-51	6-60 + PV	VHT (B)	Т
Channel or Bonnet:	SA-516-60 + Ep	oxy coatin	g + CP (1)			Channel (Cover:	SA-266-G	R1 + Epoxy o	oating + 0	P(1)	
Tubesheet-Stationary	SA-182-F60 (32	205) (37)		SA-182-F60 (32205) (37)									
Floating Head Cover:		SA-516-6	0 + PWH	HT (8) + Duple	x SS clad	9	Impingem	ent Plate :	Rectangul	ar Plate 300	x 300 mm		
Baffles-Cross:	15 (11)	ী	Гуре	Single-Seg. (H)	%Cut (Di	am) :	20,86	Spacing(c	/c): 13	x 325 Inlet	733 m	m	
Baffles-Long:	No			3	Seal Typ	e :	None						
Supports-Tube :	Yes			9	U-Bend s	support:	Yes / No		Type Floa	ting Head Fi	II Support	8	
Bypass Seal Arranger	nent;	Refer Tul	be Layou	it.	Tube-Tub	besheet	Joint :	Strength V	Velded				
Expansion Joint:		No			Type:			166					
Rho-V2 [kg/(m.s2)]-In	et Nozzle :	1 961,1)	Bundle E	ntrance	365,80		Bundle Ex	355,2	1		
Gaskets-Shell Side :		(34)		- 1	-Tube Sid	de :	(34)		-Floating t	ead: (34)			
Code Requirements :		A	SME Sec	VIII Div. 1, A	PI 660 (38	3)			TEMA CIA	ss R			
Weight/Shell:	23573 (10)			h Water :	34898 (1	-	kg	- 1	Bundle :	12455 (10)	ka ka		_
Notes	(10)/281					123					37		_
For notes refer to Pag	e 4												_
	(Algorita)												_

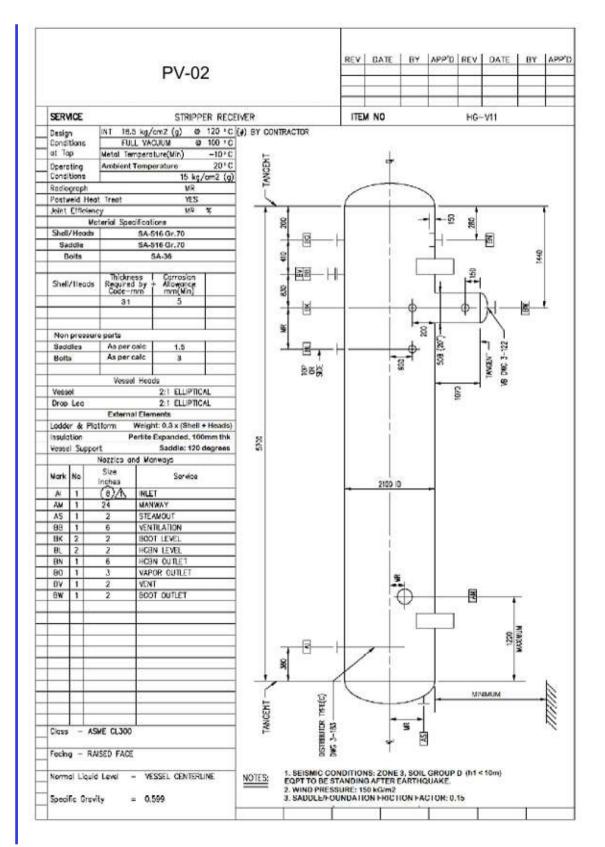
Requerimientos mecánicos

Cálculo de recipiente horizontal

Cálculo de recipiente vertical

MÓDULO II


RECIPIENTES HORIZONTALES

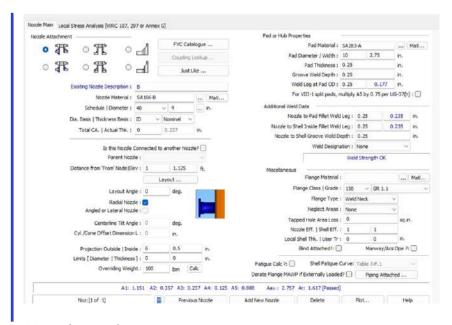

■ DESARROLLO DE MÓDULO

- Interpretación de especificaciones del recipiente. (Hoja de Datos)
- Diseño de componentes (cilindros).
- Diseño de componentes (cabezas).
- MAWP del Recipiente.
- Temperatura mínima de diseño del metal.
- Presión externa en cilindros y cabezas.
- Diseño de componentes(boquillas).
- Soporte tipo silleta (saddle).

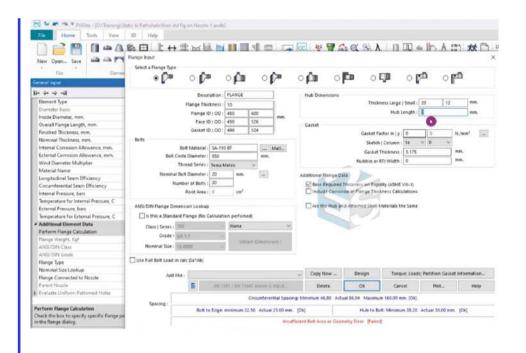
OBJETIVO DE MÓDULO

 Diseñar y analizar recipientes horizontales utilizando PV ELITE, interpretando especificaciones y evaluando esfuerzos y presiones

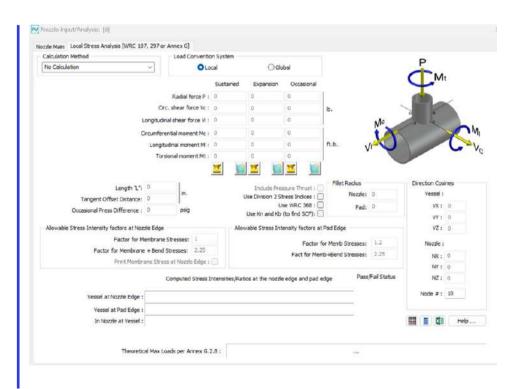
MÓDULO III


BOQUILLAS Y BRIDAS DE CUERPO

■ DESARROLLO DE MÓDULO


- Refuerzo en boquillas.
- Boquillas en cabeza y ángulos de salida.
- Problema de diseño de componentes (boquillas).
- Esfuerzos por cargas externas.
- WRC107 análisis de esfuerzos.
- Problema de diseño de componentes.
- Interpretación de resultados.
- Diseño de Bridas de Cuerpo.

OBJETIVO DE MÓDULO

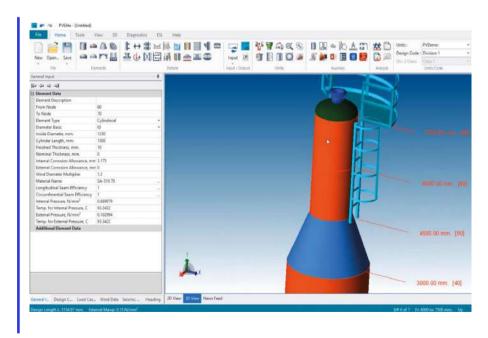

 Diseñar y evaluar boquillas y los esfuerzos en recipientes utilizando PV ELITE, aplicando refuerzos y análisis específicos.

Nozzle Main

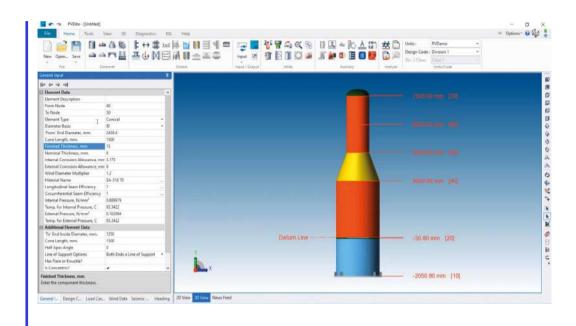
Análisis de selección de brida

Local Stress Analysis

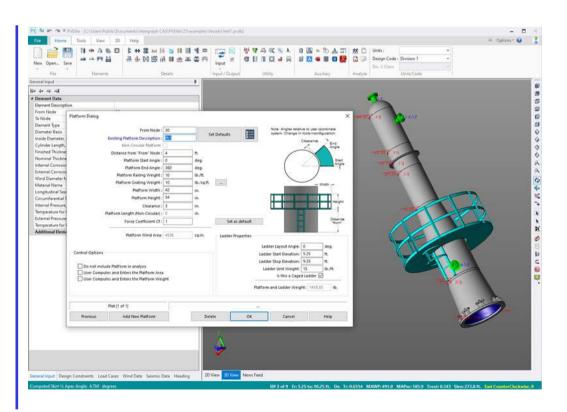
MÓDULO IV


SECCIONES CÓNICAS

■ DESARROLLO DE MÓDULO


- Directrices para las secciones cónicas.
- Requisitos previos para realizar los cálculos de secciones cónicas.
- Problema de diseño de componentes.

■ OBJETIVO DE MÓDULO

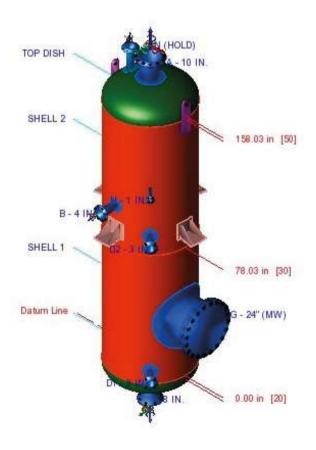

 Realizar cálculos y diseñar secciones cónicas en recipientes a presión utilizando PV ELITE.

• Diseño de Pasarela

Diseño Elementos Cilíndricos y Cónicos

• Diseño de Plataformas

MÓDULO V


RECIPIENTES VERTICALES

■ DESARROLLO DE MÓDULO

- Procedimiento de diseño.
- Análisis de Columna
- Cálculo por Sismo
- Cálculo por Viento
- Cálculo de Faldon
- Cálculo Mensulas

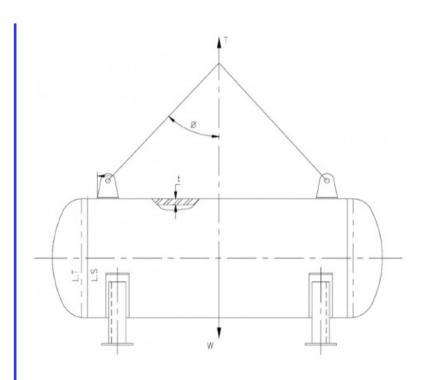
■ OBJETIVO DE MÓDULO

 Aplicar principios y procedimientos de diseño para recipientes verticales, considerando esfuerzos permisibles, cargas de viento y sismo, y soportes.

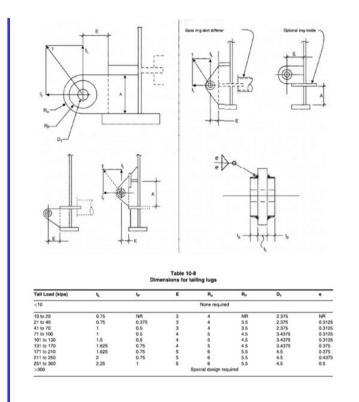
Análisis de Tanque vertical

• Diseño de Tanque Vertical

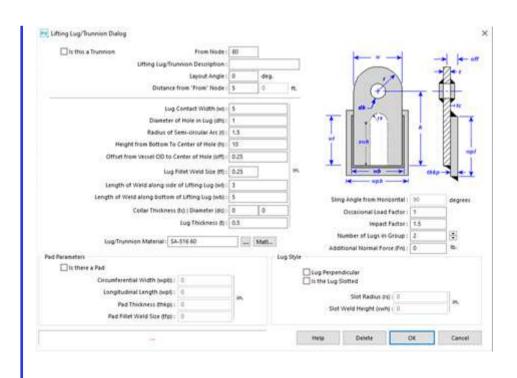
MÓDULO VI


SOPORTES Y OREJAS DE IZAJE

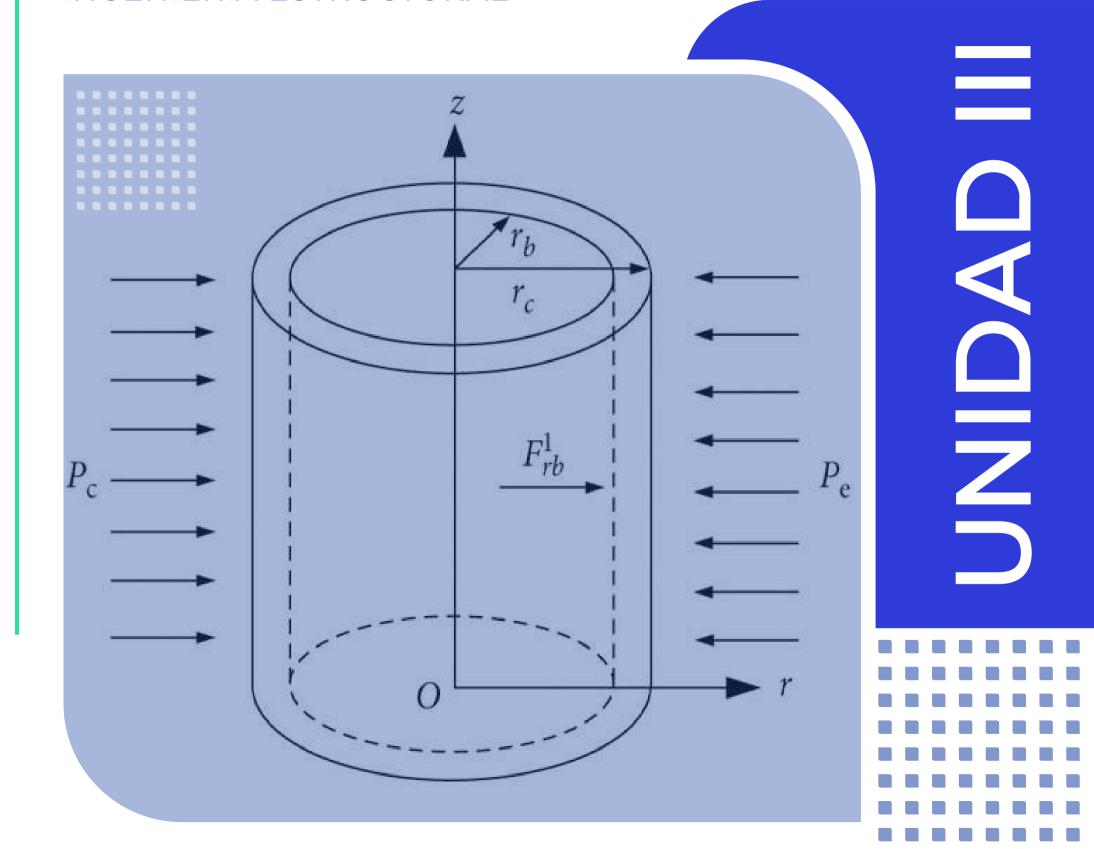
■ DESARROLLO DE MÓDULO


- Orejas de Izaje Tapas y Cuerpo.
- Orejas de Coleo.
- Clips para Plataformas y Escaleras.
- Tapas y Cuerpo.
- Problemas.

■ OBJETIVO DE MÓDULO


 Diseñar y analizar soportes y orejas de izaje, coleo y otros elementos estructurales resolviendo problemas de diseño de componentes específicos utilizando PV ELITE.

Orejas de Izaje

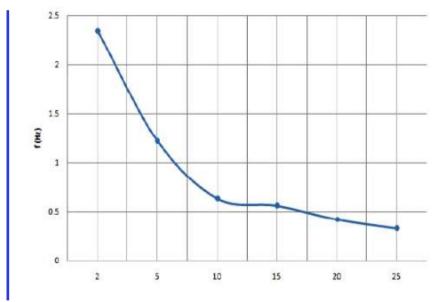

Dimensiones para Oreja de Izaje vertical

Lifting Lug / Trunnion Dialog

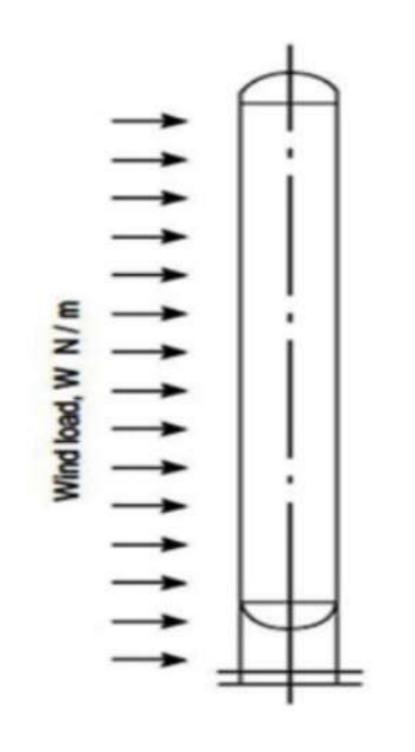
UNIDAD PRÁCTICA

DESARROLLO DE INGENIERIA ESTRUCTURAL

MÓDULOI


CARGAS DE DISEÑO, VIENTO Y SISMO

■ DESARROLLO DE MÓDULO

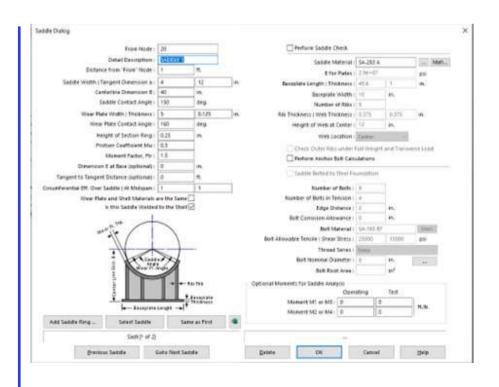

- Cargas actuando en recipientes.
- Presión de viento cortante, momento de vuelco.
- Movimientos sísmicos, frecuencia, periódo natural de vibración.
- Cortante en base verticales y horizontales.

■ OBJETIVO DE MÓDULO

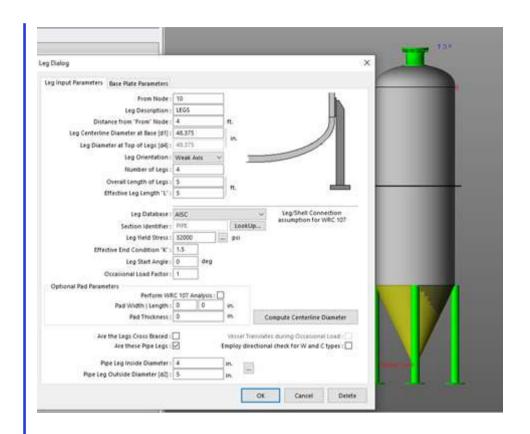
 Analizar y diseñar recipientes a presión considerando las cargas de viento y sismo.

• Gráfico de L/D vs. Frecuencia

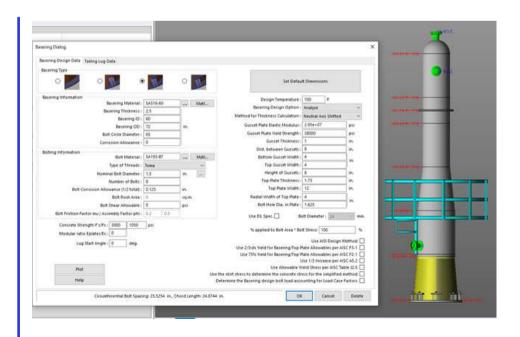
MÓDULO II


SOPORTE PARA EQUIPOS VERTICALES

■ DESARROLLO DE MÓDULO


- Diseño de faldones.
- Diseño de silletas.
- Mensula soporte.
- Diseño de patas.

OBJETIVO DE MÓDULO


 Diseñar soportes eficientes para equipos verticales.

Silleta (Saddle)

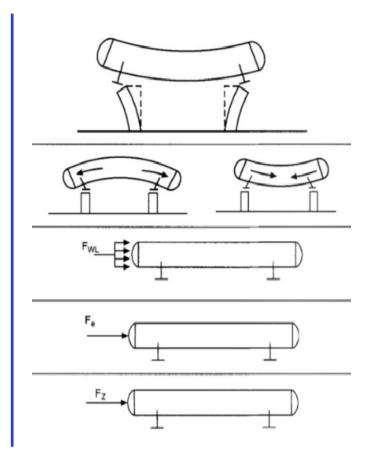
Patas (Legs)

• Faldon (Skirt)

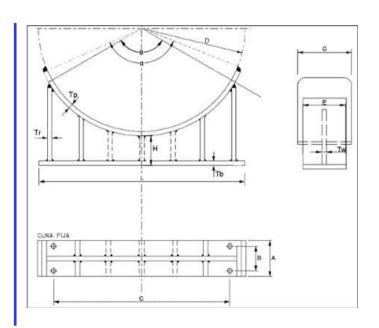
MÓDULO III

SOPORTE PARA EQUIPOS HORIZONTALES

■ DESARROLLO DE MÓDULO

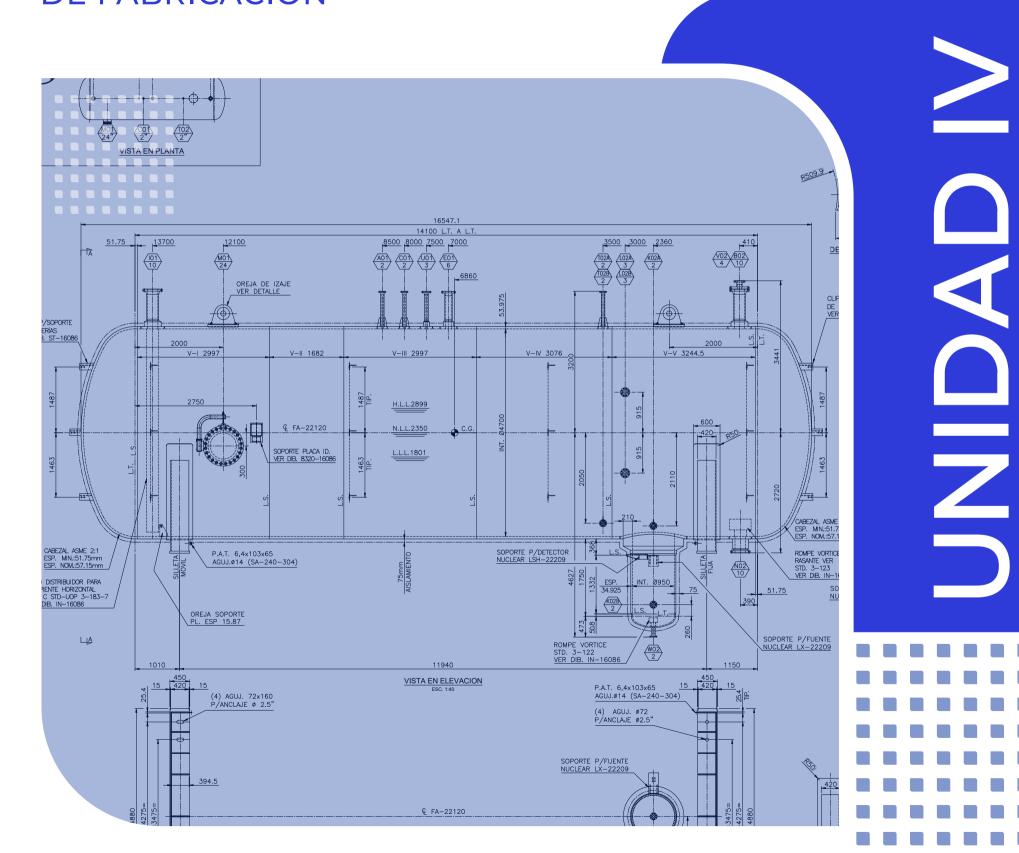

- Diseño de cunas.
- Ubicación de soportes.
- Componentes de soportes.
- Estándar de cuna.
- Verificación de espesores.
- Pernos de anclaje.
- Dilatación térmica.

■ OBJETIVO DE MÓDULO


 Diseñar soportes eficientes para equipos horizontales

								MATERIAL	DIÁMETRO			ANALISIS DE CARGAS PERMISIBLES													
TAG	SERVICIO	SERVICIO	DIAMETRO	MATERIAL DE BRIDA	RATING/ TIPO DE BRIDA/ FACING	MATERIAL DE CUELLO	SCH	PROYECCIÓN, en mm	DE PLANCHA DE REFUERZO	DE PLANCHA DE REFUERZO, en mm	DE PLANCHA DE REFUERZO, en mm	UBICACIÓN	CRITERIO DE ANALISIS	RELACIÓN DE ESFUERZOS MÁXIMA	COMPARACIÓN DE SUMA										
														Type of strees int.	Mex. S.I.	2.1									
Pi	Salida de Producto	6"	SA-105	150# WNRF	SA-53 Gr.B	90	273	\$A-516 Gr.B	400	8	CABEZA LATERAL	WRC 107/537	0.576	Pm (SUS) Pm (SUS+OCC) Pm-P1 (SUS+OCC) Pm-P1 (SUS+OCC) Pm-P1+Q (TOTAL)	2840 2840 7256 8115 28472										
														Type of Strees Int.	Hac. S.I.	6,1									
P2	Entrada de Producto	4*	SA-105	150# WNRF	SA-53 Gr.B	90	740	SA-516 Gr.8	305	9	CASCO	WRC 107/537	0.606	Pm (SUS+OCC) Pm (SUS+OCC) Pm+Pl (SUS) Pm+Pl (SUS+OCC) Pm+Pl+Q (TOTAL)	2443 2443 6629 7707 31965	******									
																							Type of Stress Int.	Max. S.I.	S.I
P3	Drenaje de Agua y purga	2"	SA-105	150# WNRF	SA-53 Gr.B	xs	103	No requiere	No requiere	No requiere	CABEZA DE BOTA	WRC 107/537	0.643	Pm (SUS) Pm (SUS+OCC) Pm+Pl (SUS+OCC) Pm+Pl (SUS+OCC) Pm+Pl+O (TOTAL)	554 554 5088 5995 30285										
3-8			4										0	Type of Stress Int.	Max. #.T.	8.1									
P5	Reserva	6"	SA-105	150# WNRF	SA- <u>53</u> Gr.B	90	705	SA-516 Gr.B	400	9	CASCO	WRC 107/537	0.870	Fm (808) Fm (808+000) Fm+F1 (808+000) Fm+F1 (808+000) Fm+F1+Q (707AL)	2443 2442 8703 10120 44411										
														Type of Stress Int.	Max. 5.1.	5.1.									
P7	Interruptor de nivel	4"	SA-105	150# WNRF	SA-53 Gr.B	90	705	SA-516 Gr.B	305	9	CASCO	WRC 107/537	0.606	Pn (SUS) Fn (SUS+OCC) Pn+Fl (SUS) Pn+Fl (SUS+OCC) Fn+Fl+O (TOTAL)	3043 2443 6027 7764 31951										
														Type of Stress Int.	Mex. S.I.	5.1									
P8	Transmisor de nivel	4"	SA+105	150# WNRF	SA-53 Gr.B	90	705	SA-516 Gr.B	305	9	CASCO	WRC 107/537	0.606	Pm (SUS) 1 Pm (SUS+OCC) 1 Pm+P1 (SUS+OCC) 1 Pm+P1 (SUS+OCC) 1 Pm+P1+Q (TOTAL)	2443 2443 6827 7704 31052										

• Resultados de Análisis

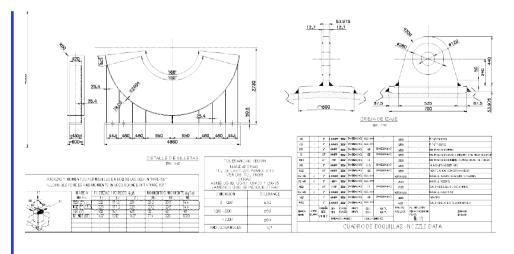

 Deflexión, expansión, contracción y viento

 Esquema referencial de cuna Estructural

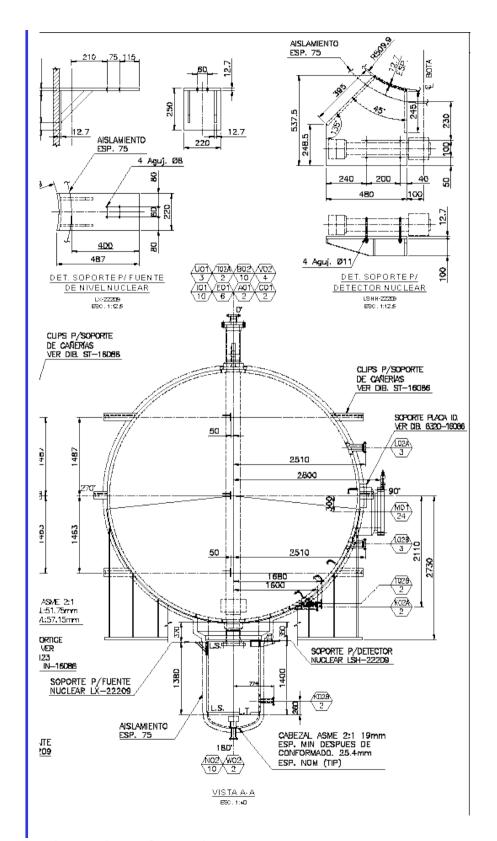
UNIDAD PRÁCTICA

INTERPRETACIÓN DE PLANOS DE FABRICACIÓN

MÓDULO I


PLANOS DE FABRICACIÓN

■ DESARROLLO DE MÓDULO


- Datos de diseño
- Datos de operación
- Materiales
- Dimensiones y pésos
- Cortantes y momentos
- Cargas externas en boquillas
- Detalles de soldadura
- Recubrimientos, asilamiento térmico, etc
- Estándares de referencia
- Detalles mínimos.

■ OBJETIVO DE MÓDULO

• Interpretar y documentar todos los aspectos técnicos esenciales, desde el diseño y la operación hasta materiales, cargas, acabados y estándares de referencia, para garantizar la calidad y seguridad del proyecto.

Plano de Referencia 1

Plano de Referencia 2

